
IoT for Advanced Applications
(Level-3)

IoT for Advanced Applications (Level-3)
Course Code: -- Credits: --

CIE Marks: 90

Exam Hours: 03 SEE Marks: 60

Course Learning Outcome (CLOs): After Completing this course successfully, the
student will be able to…

CLO Learning Outcome

CLO 1
Integrate Artificial Intelligence (AI) with IoT for predictive analytics and

automation in IoT systems.

CLO 2
Apply edge computing concepts to IoT applications, minimizing latency and

improving real-time performance.

CLO 3 Design scalable IoT systems capable of handling high traffic and large networks.

CLO 4 Implement blockchain technology for secure IoT transactions.

CLO 5
Develop real-time IoT applications for environments that require low-latency

data processing.

CLO 6
Design and deploy large-scale IoT systems, such as smart city solutions, with

real-world applications.

Summary of Course Content

Textbooks:

• "Internet of Things: A Hands-On Approach" by Arshdeep Bahga, Vijay Madisetti

• "Designing the Internet of Things" by Adrian McEwen, Hakim Cassimally

• "AI and IoT: Integrating Artificial Intelligence with IoT" by S. G. Deshmukh

Additional References:

• "Building the Internet of Things" by Maciej Kranz

• "Blockchain Applications for IoT" by Nir Kshetri

• "Real-Time Systems: Design and Analysis" by Phillip A. Laplante

Serial No. SUMMARY OF COURSE CONTENT Hours CLOs

1
Integrating Artificial Intelligence (AI) with IoT for predictive analytics and

automation
6 CLO 1

2
Applying edge computing concepts to minimize latency and improve real-

time performance
5 CLO 2

3 Designing scalable IoT systems for handling high traffic and large networks 8 CLO 3

4 Implementing blockchain technology for secure IoT transactions 4 CLO 4

5
Developing real-time IoT applications for low-latency data processing

environments
7 CLO 5

6 Designing and deploying large-scale IoT systems (e.g., smart city solutions) 10 CLO 6

Assessment Pattern

Bloom's Category
Marks (out of 90)

Lab Participation
(10)

Assignments
(10)

Quizzes
(10)

Remember 05
Understand 05
Apply 05

Analyze 05

Evaluate 05 05

Create

Bloom's Category Test

Remember

Understand

Apply 10

Analyze

Evaluate

Create 10

CIE- Continuous Internal Evaluation (30 Marks)

SEE- Semester End Examination (20 Marks)

Course Plan
Week Topics Teaching-Learning Strategy(s)

Class

Hour

Practice

Hour

Assessment

Strategy(s)
Mapping with CLO

01
IoT with AI: Ability to develop AI-driven IoT

solutions for predictive analytics and automation.

Lecture on AI in IoT, Hands-on

exercises using AI algorithms with

IoT

5h 4h

AI Integration

Exercise, Lab

Participation

CLO 1: Integrate AI

with IoT for predictive

analytics and

automation

02
IoT Edge Computing: Ability to apply edge

computing for latency reduction in IoT applications.

Lecture and hands-on practice with

edge computing devices
5h 4h

Practical Lab, Edge

Computing

Assignment

CLO 2: Apply edge

computing to

minimize latency and

improve performance

03

IoT Scalability and Optimization: Ability to design

scalable and optimized IoT systems for large

networks.

Demonstration of scaling IoT

systems, Hands-on optimization

exercises

5h 4h

Scaling Exercise,

Report on

Optimization

CLO 3: Design

scalable IoT systems

for large networks

04
IoT Blockchain Applications: Understanding

blockchain integration for secure IoT transactions.

Lecture, Blockchain hands-on

implementation in IoT systems
5h 4h

Blockchain

Integration Lab,

Quiz

CLO 4: Implement

blockchain for secure

IoT transactions

05
IoT System Architecture: Ability to design and

implement large-scale IoT architectures.

Lecture and system design

exercises, IoT system planning
5h 4h

System Design

Exercise, Group

Presentation

CLO 6: Design and

deploy smart city IoT

solutions

06
Real-Time IoT Applications: Ability to develop real-

time IoT applications with minimal delay.

Hands-on practice with real-time

data processing and IoT

applications

5h 4h

Real-time

Application Project,

Practical Test

CLO 5: Develop real-

time IoT applications

07

Project: Smart City Solutions: Ability to

conceptualize and develop IoT projects for smart

cities (e.g., smart traffic lights).

Guided project-based learning,

group discussions
5h 5h

Project Progress

Evaluation, Lab

Journal

CLO 6: Design and

deploy smart city IoT

solutions

08

Security in Advanced IoT Systems: Ability to apply

advanced security mechanisms for large-scale IoT

systems.

Hands-on implementation of IoT

security features (encryption, secure

communication)

5h 4h
Security Testing

Report, Participation

CLO 4: Implement

blockchain for secure

IoT transactions

Course Plan
Week Topics Teaching-Learning Strategy(s)

Class

Hour

Practice

Hour

Assessment

Strategy(s)
Mapping with CLO

09

AI Integration in IoT Systems: Ability to integrate

AI algorithms into IoT applications for automation

and analytics.

Hands-on exercises with AI tools,

Integration of AI models in IoT

systems

5h 4h

AI Integration

Project, Peer

Evaluation

CLO 1: Integrate AI

with IoT for

predictive analytics

and automation

10

IoT System Testing and Optimization: Ability to

test, optimize, and scale IoT systems for

performance.

Testing and debugging sessions,

System optimization exercises
5h 4h

System Testing and

Debugging Report

CLO 3: Design

scalable IoT systems

for large networks

11

Project: Smart City Solutions Part II: Ability to

apply course concepts to a real-world smart city IoT

project.

Continue project development,

integrate IoT solutions into smart

city modules

5h 5h

Project Development

Evaluation, Progress

Review

CLO 6: Design and

deploy smart city IoT

solutions

12

Final Project Work: Ability to design and deploy

large-scale IoT systems, such as smart city

solutions.

Independent work on final project,

incorporating course learnings
5h 5h

Final Project Report,

Prototype Evaluation

CLO 6: Design and

deploy smart city IoT

solutions

13

Final Project Testing and Debugging: Ability to

troubleshoot and optimize IoT systems before final

deployment.

Debugging, system testing, and

optimization of final projects
5h 4h

Project Testing and

Debugging Report

CLO 6: Design and

deploy smart city IoT

solutions

14

Project Presentation and Evaluation: Ability to

communicate IoT project designs and results

effectively.

Project presentations, peer review

and evaluation
5h 1h

Presentation

Evaluation, Peer

Review

CLO 6: Design and

deploy smart city IoT

solutions

15
Final Assessment: Evaluation of knowledge and

practical skills in advanced IoT technologies.

Written exam, practical test based

on course content
5h

Written Exam,

Practical Assessment
CLO 1-6: All CLOs

16
Review and Feedback: Clarify any doubts and

review key concepts from the course.
Interactive review session, Q&A 5h

Participation, Short

Feedback Survey
CLO 1-6: All CLOs

17
Wrap-up and Future of IoT: Understanding

emerging trends and future directions in IoT.

Lecture on IoT trends, Future of IoT

technology
5h

Future IoT Trends

Reflection,

Discussion

CLO 1-6: All CLOs

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENTS

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENT 1

OBJECTIVE:

Write a Program to Implement Breadth First Search using Python.

BRIEF DESCRIPTION:

Breadth-First Search Algorithm or BFS is the most widely utilized method.

BFS is a graph traversal approach in which you start at a source node and layer by layer through the graph,

analyzing the nodes directly related to the source node. Then, in BFS traversal, you must move on to the next-

level neighbor nodes.

According to the BFS, you must traverse the graph in a breadthwise direction:

• To begin, move horizontally and visit all the current layer's nodes.

• Continue to the next layer.

Breadth-First Search uses a queue data structure to store the node and mark it as "visited" until it

marks all the neighboring vertices directly related to it. The queue operates on the First in First out

(FIFO) principle, so the node's neighbors will be viewed in the order in which it inserts them in the

node, starting with the node that was inserted first.

PRE-EXPERIMENT QUESTIONS:

1. What is searching?

2. What is QUEUE data structure?

https://www.simplilearn.com/tutorials/python-tutorial/queue-in-python

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

Explanation:

graph = {

 '5' : ['3','7'],

 '3' : ['2', '4'],

 '7' : ['8'],

 '2' : [],

 '4' : ['8'],

 '8' : []

}

visited = [] # List for visited nodes.

queue = [] #Initialize a queue

def bfs(visited, graph, node): #function for BFS

 visited.append(node)

 queue.append(node)

 while queue: # Creating loop to visit each node

 m = queue.pop(0)

 print (m, end = " ")

 for neighbour in graph[m]:

 if neighbour not in visited:

 visited.append(neighbour)

 queue.append(neighbour)

Driver Code

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

print("Following is the Breadth-First Search")

bfs(visited, graph, '5') # function calling

Output:

POST EXPERIMENT QUESTIONS:

1 .What do you understand by BFS?

2. What is the time and space complexity of BFS?

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENT 2

OBJECTIVE:

Write a Program to Implement Depth First Search using Python.

BRIEF DESCRIPTION:

DFS is a recursive algorithm to search all the vertices of a tree data structure or a graph. The depth-

first search (DFS) algorithm starts with the initial node of graph G and goes deeper until we find the

goal node or the node with no children.

Because of the recursive nature, stack data structure can be used to implement the DFS algorithm.

The process of implementing the DFS is similar to the BFS algorithm.

The step by step process to implement the DFS traversal is given as follows -

• First, create a stack with the total number of vertices in the graph.

• Now, choose any vertex as the starting point of traversal, and push that vertex into the stack.

• After that, push a non-visited vertex (adjacent to the vertex on the top of the stack) to the top

of the stack.

• Now, repeat steps 3 and 4 until no vertices are left to visit from the vertex on the stack's top.

• If no vertex is left, go back and pop a vertex from the stack.

• Repeat steps 2, 3, and 4 until the stack is empty.

PRE EXPERIMENT QUESTIONS:

1. What is tree and graph data structure?

2. What do you understand by Stack data structure?

Explanation:

Using a Python dictionary to act as an adjacency list

graph = {

 '5' : ['3','7'],

 '3' : ['2', '4'],

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 '7' : ['8'],

 '2' : [],

 '4' : ['8'],

 '8' : []

}

visited = set() # Set to keep track of visited nodes of graph.

def dfs(visited, graph, node): #function for dfs

 if node not in visited:

 print (node, end=" ")

 visited.add(node)

 for neighbour in graph[node]:

 dfs(visited, graph, neighbour)

Driver Code

print("Following is the Depth-First Search")

dfs(visited, graph, '5')

Output:

POST EXPERIMENT QUESTIONS:

1. What do you understand by DFS?

2. What is the time and space complexity of DFS?

3. What is the difference between BFS & DFS?

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENT 3

OBJECTIVE:

Write a Program to Implement Tic-Tac-Toe game using Python.

BRIEF DESCRIPTION:

The game Tic Tac Toe is also known as Noughts and Crosses or Xs and Os ,the player needs to take turns

marking the spaces in a 3x3 grid with their own marks,if 3 consecutive marks (Horizontal, Vertical,Diagonal)

are formed then the player who owns these moves get won.

Assume ,

Player 1 - X

Player 2 - O

So,a player who gets 3 consecutive marks first, they will win the game .

PRE EXPERIMENT QUESTIONS:

1. What do you understand by BFS?

2. What do you understand by DFS?

Explanation:

Function to print Tic Tac Toe

def print_tic_tac_toe(values):

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 print("\n")

 print("\t | |")

 print("\t {} | {} | {}".format(values[0], values[1], values[2]))

 print('\t_____|_____|_____')

 print("\t | |")

 print("\t {} | {} | {}".format(values[3], values[4], values[5]))

 print('\t_____|_____|_____')

 print("\t | |")

 print("\t {} | {} | {}".format(values[6], values[7], values[8]))

 print("\t | |")

 print("\n")

Function to print the score-board

def print_scoreboard(score_board):

 print("\t--------------------------------")

 print("\t SCOREBOARD ")

 print("\t--------------------------------")

 players = list(score_board.keys())

 print("\t ", players[0], "\t ", score_board[players[0]])

 print("\t ", players[1], "\t ", score_board[players[1]])

 print("\t--------------------------------\n")

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

Function to check if any player has won

def check_win(player_pos, cur_player):

 # All possible winning combinations

 soln = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 4, 7], [2, 5, 8], [3, 6, 9], [1, 5, 9], [3, 5, 7]]

 # Loop to check if any winning combination is satisfied

 for x in soln:

 if all(y in player_pos[cur_player] for y in x):

 # Return True if any winning combination satisfies

 return True

 # Return False if no combination is satisfied

 return False

Function to check if the game is drawn

def check_draw(player_pos):

 if len(player_pos['X']) + len(player_pos['O']) == 9:

 return True

 return False

Function for a single game of Tic Tac Toe

def single_game(cur_player):

 # Represents the Tic Tac Toe

 values = [' ' for x in range(9)]

 # Stores the positions occupied by X and O

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 player_pos = {'X':[], 'O':[]}

 # Game Loop for a single game of Tic Tac Toe

 while True:

 print_tic_tac_toe(values)

 # Try exception block for MOVE input

 try:

 print("Player ", cur_player, " turn. Which box? : ", end="")

 move = int(input())

 except ValueError:

 print("Wrong Input!!! Try Again")

 continue

 # Sanity check for MOVE inout

 if move < 1 or move > 9:

 print("Wrong Input!!! Try Again")

 continue

 # Check if the box is not occupied already

 if values[move-1] != ' ':

 print("Place already filled. Try again!!")

 continue

 # Update game information

 # Updating grid status

 values[move-1] = cur_player

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 # Updating player positions

 player_pos[cur_player].append(move)

 # Function call for checking win

 if check_win(player_pos, cur_player):

 print_tic_tac_toe(values)

 print("Player ", cur_player, " has won the game!!")

 print("\n")

 return cur_player

 # Function call for checking draw game

 if check_draw(player_pos):

 print_tic_tac_toe(values)

 print("Game Drawn")

 print("\n")

 return 'D'

 # Switch player moves

 if cur_player == 'X':

 cur_player = 'O'

 else:

 cur_player = 'X'

if _name_ == "_main_":

 print("Player 1")

 player1 = input("Enter the name : ")

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 print("\n")

 print("Player 2")

 player2 = input("Enter the name : ")

 print("\n")

 # Stores the player who chooses X and O

 cur_player = player1

 # Stores the choice of players

 player_choice = {'X' : "", 'O' : ""}

 # Stores the options

 options = ['X', 'O']

 # Stores the scoreboard

 score_board = {player1: 0, player2: 0}

 print_scoreboard(score_board)

 # Game Loop for a series of Tic Tac Toe

 # The loop runs until the players quit

 while True:

 # Player choice Menu

 print("Turn to choose for", cur_player)

 print("Enter 1 for X")

 print("Enter 2 for O")

 print("Enter 3 to Quit")

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 # Try exception for CHOICE input

 try:

 choice = int(input())

 except ValueError:

 print("Wrong Input!!! Try Again\n")

 continue

 # Conditions for player choice

 if choice == 1:

 player_choice['X'] = cur_player

 if cur_player == player1:

 player_choice['O'] = player2

 else:

 player_choice['O'] = player1

 elif choice == 2:

 player_choice['O'] = cur_player

 if cur_player == player1:

 player_choice['X'] = player2

 else:

 player_choice['X'] = player1

 elif choice == 3:

 print("Final Scores")

 print_scoreboard(score_board)

 break

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 else:

 print("Wrong Choice!!!! Try Again\n")

 # Stores the winner in a single game of Tic Tac Toe

 winner = single_game(options[choice-1])

 # Edits the scoreboard according to the winner

 if winner != 'D' :

 player_won = player_choice[winner]

 score_board[player_won] = score_board[player_won] + 1

 print_scoreboard(score_board)

 # Switch player who chooses X or O

 if cur_player == player1:

 cur_player = player2

 else:

 cur_player = player1

Output:

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 POST EXPERIMENT QUESTIONS:

1. How to implement tic-tac-toe using BFS?

2. How to implement tic-tac-toe using DFS?

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENT 4

OBJECTIVE:

Write a Program to implement 8-Puzzle problem using Python.

BRIEF DESCRIPTION:

The 8 puzzle consists of eight numbered, movable tiles set in a 3x3 frame. One cell of the frame is always

empty thus making it possible to move an adjacent numbered tile into the empty cell. Such a puzzle is

illustrated in following diagram.

The program is to change the initial configuration into the goal configuration.

A solution to the problem is an appropriate sequence of moves, such as “move tile 5 to the right, move tile

7 to the left, move tile 6 to the down” etc…

To solve a problem, we must specify the global database, the rules, and the control strategy.

For the 8 puzzle problem that correspond to three components.

These elements are the problem states, moves and goal.

In this problem each tile configuration is a state.

The set of all possible configuration in the problem space, consists of 3,62,880 different configurations of

the 8 tiles and blank space.

For the 8-puzzle, a straight forward description is a 3X3 array of matrix of numbers. Initial global database is

this description of the initial problem state. Virtually any kind of data structure can be used to describe

states.

A move transforms one problem state into another state.

PRE EXPERIMENT QUESTIONS:

1. What do you understand by BFS?

2. What do you understand by DFS?

3. What is branch and bound?

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

Explanation:

import copy

from heapq import heappush, heappop

n = 3

row = [1, 0, -1, 0]

col = [0, -1, 0, 1]

class priorityQueue:

 def _init_(self):

 self.heap = []

 def push(self, k):

 heappush(self.heap, k)

 def pop(self):

 return heappop(self.heap)

 def empty(self):

 if not self.heap:

 return True

 else:

 return False

class node:

 def _init_(self, parent, mat, empty_tile_pos,

 cost, level):

 self.parent = parent

 self.mat = mat

 self.empty_tile_pos = empty_tile_pos

 self.cost = cost

 self.level = level

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 def _lt_(self, nxt):

 return self.cost < nxt.cost

 def calculateCost(mat, final) -> int:

 count = 0

 for i in range(n):

 for j in range(n):

 if ((mat[i][j]) and

 (mat[i][j] != final[i][j])):

 count += 1

 return count

def newNode(mat, empty_tile_pos, new_empty_tile_pos,

 level, parent, final) -> node:

 new_mat = copy.deepcopy(mat)

 x1 = empty_tile_pos[0]

 y1 = empty_tile_pos[1]

 x2 = new_empty_tile_pos[0]

 y2 = new_empty_tile_pos[1]

 new_mat[x1][y1], new_mat[x2][y2] = new_mat[x2][y2], new_mat[x1][y1]

 cost = calculateCost(new_mat, final)

 new_node = node(parent, new_mat, new_empty_tile_pos,

 cost, level)

 return new_node

def printMatrix(mat):

 for i in range(n):

 for j in range(n):

 print("%d " % (mat[i][j]), end = " ")

 print()

def isSafe(x, y):

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 return x >= 0 and x < n and y >= 0 and y < n

def printPath(root):

 if root == None:

 return

 printPath(root.parent)

 printMatrix(root.mat)

 print()

def solve(initial, empty_tile_pos, final):

 pq = priorityQueue()

 cost = calculateCost(initial, final)

 root = node(None, initial,

 empty_tile_pos, cost, 0)

 pq.push(root)

 while not pq.empty():

 minimum = pq.pop()

 if minimum.cost == 0:

 printPath(minimum)

 return

 for i in range(4):

 new_tile_pos = [

 minimum.empty_tile_pos[0] + row[i],

 minimum.empty_tile_pos[1] + col[i],]

 if isSafe(new_tile_pos[0], new_tile_pos[1]):

 child = newNode(minimum.mat,

 minimum.empty_tile_pos,

 new_tile_pos,

 minimum.level + 1,

 minimum, final,)

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

pq.push(child)

initial = [[1, 2, 3],

 [5, 6, 0],

 [7, 8, 4]]

final = [[1, 2, 3],

 [5, 8, 6],

 [0, 7, 4]]

empty_tile_pos = [1, 2]

solve(initial, empty_tile_pos, final)

Output:

POST EXPERIMENT QUESTIONS:

1. Which algorithm is used in 8-Puzzle problem?

2. How many states are there in the 8-puzzle problem?

3. What are the components of 8-puzzle problem?

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENT 5

OBJECTIVE:

Write a Program to Implement Water-Jug problem using Python.

BRIEF DESCRIPTION:

There are two jugs of volume A litre and B litre. Neither has any measuring mark on it.There is a pump that

can be used to fill the jugs with water. How can you get exactly x litre of water into the A litre jug. Assuming

that we have unlimited supply of water.

Note: Let's assume we have A=4 litre and B= 3 litre jugs. And we want exactly 2 Litre water into jug A (i.e. 4

litre jug) how we will do this.

The state space for this problem can be described as the set of ordered pairs of integers (x, y)

Where,

x represents the quantity of water in the 4-gallon jug x= 0,1,2,3,4

y represents the quantity of water in 3-gallon jug y=0,1,2,3

Start State: (0,0)

Goal State: (2,0)

Generate production rules for the water jug problem

We basically perform three operations to achieve the goal.

1. Fill water jug.
2. Empty water jug
3. and Transfer water jug

Production Rules:

Rule State Process
1 (X,Y | X<4) (4,Y)

{Fill 4-gallon jug}
2 (X,Y |Y<3) (X,3)

{Fill 3-gallon jug}
3 (X,Y |X>0) (0,Y)

{Empty 4-gallon jug}
4 (X,Y | Y>0) (X,0)

{Empty 3-gallon jug}
5 (X,Y | X+Y>=4 ^

Y>0)
(4,Y-(4-X))

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

{Pour water from 3-gallon jug into 4-gallon jug until 4-gallon jug is
full}

6 (X,Y | X+Y>=3
^X>0)

(X-(3-Y),3)
{Pour water from 4-gallon jug into 3-gallon jug until 3-gallon jug is

full}
7 (X,Y | X+Y<=4

^Y>0)
(X+Y,0)

{Pour all water from 3-gallon jug into 4-gallon jug}
8 (X,Y | X+Y <=3^

X>0)
(0,X+Y)

{Pour all water from 4-gallon jug into 3-gallon jug}
9 (0,2) (2,0)

{Pour 2 gallon water from 3 gallon jug into 4 gallon jug}

Initialization:

Start State: (0,0)

Apply Rule 2:

(X,Y | Y<3) ->

(X,3)

{Fill 3-gallon jug}

Now the state is (X,3)

Iteration 1:

Current State: (X,3)

Apply Rule 7:

(X,Y | X+Y<=4 ^Y>0)

(X+Y,0)

{Pour all water from 3-gallon jug into 4-gallon jug}

Now the state is (3,0)

Iteration 2:

Current State : (3,0)

Apply Rule 2:

(X,Y | Y<3) ->

(3,3)

{Fill 3-gallon jug}

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

Now the state is (3,3)

Iteration 3:

Current State:(3,3)

Apply Rule 5:

(X,Y | X+Y>=4 ^ Y>0)

(4,Y-(4-X))

{Pour water from 3-gallon jug into 4-gallon jug until 4-gallon jug is full}

Now the state is (4,2)

Iteration 4:

Current State : (4,2)

Apply Rule 3:

(X,Y | X>0)

(0,Y)

{Empty 4-gallon jug}

Now state is (0,2)

Iteration 5:

Current State : (0,2)

Apply Rule 9:

(0,2)

(2,0)

{Pour 2 gallon water from 3 gallon jug into 4 gallon jug}

Now the state is (2,0)

Goal Achieved.

PRE EXPERIMENT QUESTIONS:

1. What do you understand by BFS?

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

2. What do you understand by DFS?

Explanation:

from collections import deque

def Solution(a, b, target):

 m = {}

 isSolvable = False

 path = []

 q = deque()

 q.append((0, 0))

 while (len(q) > 0):

 u = q.popleft()

 if ((u[0], u[1]) in m):

 continue

 if ((u[0] > a or u[1] > b or

 u[0] < 0 or u[1] < 0)):

 continue

 path.append([u[0], u[1]])

 m[(u[0], u[1])] = 1

 if (u[0] == target or u[1] == target):

 isSolvable = True

 if (u[0] == target):

 if (u[1] != 0):

 path.append([u[0], 0])

 else:

 if (u[0] != 0):

 path.append([0, u[1]])

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 sz = len(path)

 for i in range(sz):

 print("(", path[i][0], ",",

 path[i][1], ")")

 break

 q.append([u[0], b])

 q.append([a, u[1]])

 for ap in range(max(a, b) + 1):

 c = u[0] + ap

 d = u[1] - ap

 if (c == a or (d == 0 and d >= 0)):

 q.append([c, d])

 c = u[0] - ap

 d = u[1] + ap

 if ((c == 0 and c >= 0) or d == b):

 q.append([c, d])

 q.append([a, 0])

 q.append([0, b])

 if (not isSolvable):

 print("Solution not possible")

if _name_ == '_main_':

 Jug1, Jug2, target = 4, 3, 2

 print("Path from initial state "

 "to solution state ::")

 Solution(Jug1, Jug2, target)

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

Output:

POST EXPERIMENT QUESTIONS:

1. How do you implement a water jug problem?

2. What is the time complexity of water jug problem?

3. What are the conditions for the water jug problem in AI?

4. Which algorithm is used to solve the water jug problem?

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENT 6

OBJECTIVE:

Write a Program to Implement Travelling Salesman Problem using Python.

BRIEF DESCRIPTION:

The travelling salesman problem is a graph computational problem where the salesman needs to visit all

cities (represented using nodes in a graph) in a list just once and the distances (represented using edges in

the graph) between all these cities are known. The solution that is needed to be found for this problem is

the shortest possible route in which the salesman visits all the cities and returns to the origin city.

If you look at the graph below, considering that the salesman starts from the vertex ‘a’, they need to travel

through all the remaining vertices b, c, d, e, f and get back to ‘a’ while making sure that the cost taken is

minimum.

PRE EXPERIMENT QUESTIONS:

1. What is Brute –Force Searching?

2. What do you understand by Greedy approach?

3. What do you understand by Dynamic approach?

Explanation:

from sys import maxsize

from itertools import permutations

V = 4

def travellingSalesmanProblem(graph, s):

 vertex = []

 for i in range(V):

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 if i != s:

 vertex.append(i)

 min_path = maxsize

 next_permutation=permutations(vertex)

 for i in next_permutation:

 current_pathweight = 0

 k = s

 for j in i:

 current_pathweight += graph[k][j]

 k = j

 current_pathweight += graph[k][s]

 min_path = min(min_path, current_pathweight)

 return min_path

if _name_ == "_main_":

 graph = [[0, 10, 15, 20], [10, 0, 35, 25],

 [15, 35, 0, 30], [20, 25, 30, 0]]

 s = 0

 print(travellingSalesmanProblem(graph, s))

Output:

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

POST EXPERIMENT QUESTIONS:

1. What are the practical applications of the travelling salesman problem?

2. What is the best algorithm for the travelling salesman problem?

3. How many possible routes are there in travelling salesman problem?

4. What is the time complexity of travelling salesman problem?

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENT 7

OBJECTIVE:

Write a Program to Implement Tower of Hanoi using Python.

BRIEF DESCRIPTION:

Tower of Hanoi is mathematical game puzzle where we have three pile (pillars) and n numbers of

disk.

This game has some rules (Rules of game)

• Only one disk will move at a time.

• The larger disk should always be on the bottom and the smaller disk on top of it.(Even

during intermediate move)

• Move only the uppermost disk.

• All disk move to destination pile from source pile.

So, here we are trying to solve that how many moves are required to solve a problem (It depends on

number of disk).

When we have two disk and 3 pillars (pile, A, B, C)

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

In the above diagram, following the rule of the game our target is move the disks from source pile (pillar) to

the destination pillar. (Let’s take a look how many steps/ moves are required to make this happen).

Step1: Move small disk to the auxiliary pillar (A).

Step2: Move large disk to the Destination pillar (B).

Step3: Move small disk to the Destination pillar (B).4

So, basically when we have 2 disks we required 3 move to reach the destination.

What if we have 3, 4, 5...n disks?

Eventually, you figure out that there is some pattern to the puzzle and with each increment in disks; the

pattern could be followed recursively.

Total move required to reach destination pillar is formula of moves means if we have 3 disks we required (4

moves to reach destination pillar), if 4 disks 8 moves required and so on...

PRE EXPERIMENT QUESTIONS:

1. What do you understand by Recursion?

2. What is Backtracking?

Explanation:

class Tower:

 def __init__(self):

 self.terminate = 1

 def printMove(self, source, destination):

 print("{} -> {}".format(source, destination))

 def move(self, disc, source, destination, auxiliary):

 if disc == self.terminate:

 self.printMove(source, destination)

 else:

 self.move(disc - 1, source, auxiliary, destination)

 self.move(1, source, destination, auxiliary)

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 self.move(disc - 1, auxiliary, destination, source)

t = Tower();

t.move(3, 'A', 'B', 'C')

Output:

POST EXPERIMENT QUESTIONS:

1. What is the practical use of Tower of Hanoi?

2. Which data structure is used in the Tower of Hanoi?

3. Can we solve Tower of Hanoi problem without recursion?

4. Which algorithm approach is used to solve the Tower of Hanoi problem?

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENT 8

OBJECTIVE:

Write a Program to Implement Monkey Banana Problem using Python.

BRIEF DESCRIPTION:

The monkey and banana problem is a famous toy problem in artificial intelligence, particularly in

logic programming and planning. A monkey is in a room. Suspended from the ceiling is a bunch of

bananas, beyond the monkey's reach. However, in the room there are also a chair and a stick. The

ceiling is just the right height so that a monkey standing on a chair could knock the bananas down

with the stick. The monkey knows how to move around, carry other things around, reach for the

bananas, and wave a stick in the air. What is the best sequence of actions for the monkey? The problem

seeks to answer the question of whether monkeys are intelligent. Both humans and monkeys have the

ability to use mental maps to remember things like where to go to find shelter, or how to avoid danger.

They can also remember where to go to gather food and water, as well as how to communicate with

each other. Monkeys have the ability not only to remember how to hunt and gather but to learn new

things, as is the case with the monkey and the bananas: despite the fact that the monkey may never

have been in an identical situation, with the same artifacts at hand, a monkey is capable of concluding

that it needs to make a ladder, position it below the bananas, and climb up to reach for them.

Suppose the problem is as given below −

• A hungry monkey is in a room, and he is near the door.

• The monkey is on the floor.

• Bananas have been hung from the center of the ceiling of the room.

• There is a block (or chair) present in the room near the window.

• The monkey wants the banana, but cannot reach it.

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

So how can the monkey get the bananas?

So if the monkey is clever enough, he can come to the block, drag the block to the center, climb on

it, and get the banana. Below are few observations in this case −

• Monkey can reach the block, if both of them are at the same level. From the above image, we

can see that both the monkey and the block are on the floor.

• If the block position is not at the center, then monkey can drag it to the center.

• If monkey and the block both are on the floor, and block is at the center, then the monkey can

climb up on the block. So the vertical position of the monkey will be changed.

• When the monkey is on the block, and block is at the center, then the monkey can get the

bananas.

PRE EXPERIMENT QUESTIONS:

1. What is logic programming?

2. What do you understand by Planning?

Explanation:

from poodle import Object, schedule

from typing import Set

class Position(Object):

 def __str__(self):

 if not hasattr(self, "locname"): return "unknown"

 return self.locname

class HasHeight(Object):

 height: int

class HasPosition(Object):

 at: Position

class Monkey(HasHeight, HasPosition): pass

class PalmTree(HasHeight, HasPosition):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 self.height = 2

class Box(HasHeight, HasPosition): pass

class Banana(HasHeight, HasPosition):

 owner: Monkey

 attached: PalmTree

class World(Object):

 locations: Set[Position]

p1 = Position()

p1.locname = "Position A"

p2 = Position()

p2.locname = "Position B"

p3 = Position()

p3.locname = "Position C"

w = World()

w.locations.add(p1)

w.locations.add(p2)

w.locations.add(p3)

m = Monkey()

m.height = 0 # ground

m.at = p1

box = Box()

box.height = 2

box.at = p2

p = PalmTree()

p.at = p3

b = Banana()

b.attached = p

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

def go(monkey: Monkey, where: Position):

 assert where in w.locations

 assert monkey.height < 1, "Monkey can only move while on the ground"

 monkey.at = where

 return f"Monkey moved to {where}"

def push(monkey: Monkey, box: Box, where: Position):

 assert monkey.at == box.at

 assert where in w.locations

 assert monkey.height < 1, "Monkey can only move the box while on the ground"

 monkey.at = where

 box.at = where

 return f"Monkey moved box to {where}"

def climb_up(monkey: Monkey, box: Box):

 assert monkey.at == box.at

 monkey.height += box.height

 return "Monkey climbs the box"

def grasp(monkey: Monkey, banana: Banana):

 assert monkey.height == banana.height

 assert monkey.at == banana.at

 banana.owner = monkey

 return "Monkey takes the banana"

def infer_owner_at(palmtree: PalmTree, banana: Banana):

 assert banana.attached == palmtree

 banana.at = palmtree.at

 return "Remembered that if banana is on palm tree, its location is where palm tree is"

def infer_banana_height(palmtree: PalmTree, banana: Banana):

 assert banana.attached == palmtree

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 banana.height = palmtree.height

 return "Remembered that if banana is on the tree, its height equals tree's height"

print('\n'.join(x() for x in schedule(

 [go, push, climb_up, grasp, infer_banana_height, infer_owner_at],

 [w,p1,p2,p3,m,box,p,b],

 goal=lambda: b.owner == m)))

Output:

$ pip install poodle

$ python ./monkey.py

Monkey moved to Position B

Remembered that if banana is on the tree, its height equals tree's height

Remembered that if banana is on palm tree, its location is where palm tree is

Monkey moved box to Position C

Monkey climbs the box

Monkey takes the banana

POST EXPERIMENT QUESTIONS:

1. How do you solve monkey banana problem?

2. Which algorithm is used to solve monkey banana problem?

LAB EXPERIMENT 9

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

Write a Program to Implement Missionaries-Cannibals Problems using Python.

BRIEF DESCRIPTION:

In the missionaries and cannibals problem, three missionaries and three cannibals must cross a river

using a boat which can carry at most two people, under the constraint that, for both banks, if there are

missionaries present on the bank, they cannot be outnumbered by cannibals (if they were, the

cannibals would eat the missionaries). The boat cannot cross the river by itself with no people on

board.

First let us consider that both the missionaries (M) and cannibals(C) are on the same side of the river.

Left Right Initially the positions are : 0M , 0C and 3M , 3C (B) Now let’s send 2 Cannibals to left of

bank : 0M , 2C (B) and 3M , 1C Send one cannibal from left to right : 0M , 1C and 3M , 2C (B) Now

send the 2 remaining Cannibals to left : 0M , 3C (B) and 3M , 0C Send 1 cannibal to the right : 0M ,

2C and 3M , 1C (B) Now send 2 missionaries to the left : 2M , 2C (B) and 1M . 1C Send 1 missionary

and 1 cannibal to right : 1M , 1C and 2M , 2C (B) Send 2 missionaries to left : 3M , 1C (B) and 0M ,

2C Send 1 cannibal to right : 3M , 0C and 0M , 3C (B) Send 2 cannibals to left : 3M , 2C (B) and 0M

, 1C Send 1 cannibal to right : 3M , 1C and 0M , 2C (B)’ Send 2 cannibals to left : 3M , 3C (B) and

0M , 0C • Here (B) shows the position of the boat after the action is performed. Therefore all the

missionaries and cannibals have crossed the river safely.

PRE EXPERIMENT QUESTIONS:

1. What is BFS searching technique?

2. What is logic programming?

Explanation:

#Python program to illustrate Missionaries & cannibals Problem

print("\n")

print("\tGame Start\nNow the task is to move all of them to right side of the river")

print("rules:\n1. The boat can carry at most two people\n2. If cannibals num greater than missionaries

then the cannibals would eat the missionaries\n3. The boat cannot cross the river by itself with no

people on board")

lM = 3 #lM = Left side Missionaries number

lC = 3 #lC = Laft side Cannibals number

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

rM=0 #rM = Right side Missionaries number

rC=0 #rC = Right side cannibals number

userM = 0 #userM = User input for number of missionaries for right to left side travel

userC = 0 #userC = User input for number of cannibals for right to left travel

k = 0

print("\nM M M C C C | --- | \n")

try:

 while(True):

 while(True):

 print("Left side -> right side river travel")

 #uM = user input for number of missionaries for left to right travel

 #uC = user input for number of cannibals for left to right travel

 uM = int(input("Enter number of Missionaries travel => "))

 uC = int(input("Enter number of Cannibals travel => "))

 if((uM==0)and(uC==0)):

 print("Empty travel not possible")

 print("Re-enter : ")

 elif(((uM+uC) <= 2)and((lM-uM)>=0)and((lC-uC)>=0)):

 break

 else:

 print("Wrong input re-enter : ")

 lM = (lM-uM)

 lC = (lC-uC)

 rM += uM

 rC += uC

 print("\n")

 for i in range(0,lM):

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 print("M ",end="")

 for i in range(0,lC):

 print("C ",end="")

 print("| --> | ",end="")

 for i in range(0,rM):

 print("M ",end="")

 for i in range(0,rC):

 print("C ",end="")

 print("\n")

 k +=1

 if(((lC==3)and (lM == 1))or((lC==3)and(lM==2))or((lC==2)and(lM==1))or((rC==3)and (rM

== 1))or((rC==3)and(rM==2))or((rC==2)and(rM==1))):

 print("Cannibals eat missionaries:\nYou lost the game")

 break

 if((rM+rC) == 6):

 print("You won the game : \n\tCongrats")

 print("Total attempt")

 print(k)

 break

 while(True):

 print("Right side -> Left side river travel")

 userM = int(input("Enter number of Missionaries travel => "))

 userC = int(input("Enter number of Cannibals travel => "))

 if((userM==0)and(userC==0)):

 print("Empty travel not possible")

 print("Re-enter : ")

 elif(((userM+userC) <= 2)and((rM-userM)>=0)and((rC-userC)>=0)):

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 break

 else:

 print("Wrong input re-enter : ")

 lM += userM

 lC += userC

 rM -= userM

 rC -= userC

 k +=1

 print("\n")

 for i in range(0,lM):

 print("M ",end="")

 for i in range(0,lC):

 print("C ",end="")

 print("| <-- | ",end="")

 for i in range(0,rM):

 print("M ",end="")

 for i in range(0,rC):

 print("C ",end="")

 print("\n")

 if(((lC==3)and (lM == 1))or((lC==3)and(lM==2))or((lC==2)and(lM==1))or((rC==3)and (rM

== 1))or((rC==3)and(rM==2))or((rC==2)and(rM==1))):

 print("Cannibals eat missionaries:\nYou lost the game")

 break

except EOFError as e:

 print("\nInvalid input please retry !!")

Output:

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

Game Start

Now the task is to move all of them to right side of the river

rules:

1. The boat can carry at most two people

2. If cannibals num greater than missionaries then the cannibals would eat the missionaries

3. The boat cannot cross the river by itself with no people on board

M M M C C C | --- |

Left side -> right side river travel

Enter number of Missionaries travel =>

Invalid input please retry!!

POST EXPERIMENT QUESTIONS:

1. How do you solve the missionaries and cannibals problem in AI?

2. Which technique is used to solve missionaries and cannibals problem?

LAB EXPERIMENT 10

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

Write a Program to implement 8-Queens Problem using Python.

BRIEF DESCRIPTION:

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that

no two queens threaten each other; thus, a solution requires that no two queens share the same row,

column, or diagonal. There are 92 solutions. We have 8 queens and an 8x8 Chess board having al

ternate black and white squares. The queens are placed on the chessboard. Any queen can attack any

other queen placed on same row, or column or diagonal. We have to find the proper placement of

queens on the Chess board in such a way that no queen attacks other queen”.

In figure, the possible board configuration for 8-queen problem has been shown. The board has

alternative black and white positions on it. The different positions on the board hold the queens.

The production rule for this game is you cannot put the same queens in a same row or same column

or in same diagonal. After shifting a single queen from its position on the board, the user have to shift

other queens according to the production rule.

Starting from the first row on the board the queen of their corresponding row and column are to be

moved from their original positions to another position. Finally the player has to be ensured that no

rows or columns or diagonals of on the table are same.

PRE EXPERIMENT QUESTIONS:

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

1. What is backtracking?

2. What do you understand by branch and bound?

Explanation:

Python program to solve N Queen problem

global N

N = 4

def printSolution(board):

for i in range(N):

for j in range(N):

print board[i][j],

print

def isSafe(board, row, col):

Check this row on left side

for i in range(col):

if board[row][i] == 1:

return False

Check upper diagonal on left side

for i, j in zip(range(row, -1, -1), range(col, -1, -1)):

if board[i][j] == 1:

return False

Check lower diagonal on left side

for i, j in zip(range(row, N, 1), range(col, -1, -1)):

if board[i][j] == 1:

return False

return True

def solveNQUtil(board, col):

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

base case: If all queens are placed

then return true

if col >= N:

return True

for i in range(N):

if isSafe(board, i, col):

Place this queen in board[i][col]

board[i][col] = 1

recur to place rest of the queens

if solveNQUtil(board, col + 1) == True:

return True

board[i][col] = 0

return False

def solveNQ():

board = [[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0]

]

if solveNQUtil(board, 0) == False:

print "Solution does not exist"

return False

printSolution(board)

return True

driver program to test above function

solveNQ()

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

Output:

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

POST EXPERIMENT QUESTIONS:

1. What is the best method to solve the 8 queen problem?

2. What is the best method to solve the 8 queen problem?

LAB EXPERIMENT 11

OBJECTIVE:

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

. Write a Program to implement Hill Climbing Algorithm.

BRIEF DESCRIPTION:

A hill-climbing algorithm is an Artificial Intelligence (AI) algorithm that increases in value

continuously until it achieves a peak solution. This algorithm is used to optimize mathematical

problems and in other real-life applications like marketing and job scheduling.

A hill-climbing algorithm is a local search algorithm that moves continuously upward (increasing)

until the best solution is attained. This algorithm comes to an end when the peak is reached.

This algorithm has a node that comprises two parts: state and value. It begins with a non-optimal state

(the hill’s base) and upgrades this state until a certain precondition is met. The heuristic function is

used as the basis for this precondition. The process of continuous improvement of the current state of

iteration can be termed as climbing. This explains why the algorithm is termed as a hill-climbing

algorithm.

A hill-climbing algorithm’s objective is to attain an optimal state that is an upgrade of the existing

state. When the current state is improved, the algorithm will perform further incremental changes to

the improved state. This process will continue until a peak solution is achieved. The peak state cannot

undergo further improvements.

A hill-climbing algorithm has four main features:

• It employs a greedy approach: This means that it moves in a direction in which the cost

function is optimized. The greedy approach enables the algorithm to establish local maxima

or minima.

• No Backtracking: A hill-climbing algorithm only works on the current state and succeeding

states (future). It does not look at the previous states.

• Feedback mechanism: The algorithm has a feedback mechanism that helps it decide on the

direction of movement (whether up or down the hill). The feedback mechanism is enhanced

through the generate-and-test technique.

• Incremental change: The algorithm improves the current solution by incremental changes.

POST EXPERIMENT QUESTIONS:

1. What is backtracking?

2. What do you understand by greedy approach?

3. What is local search algorithm?

Explanation:

import random

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

import numpy as np

coordinate = np.array([[1,2], [30,21], [56,23], [8,18], [20,50], [3,4], [11,6], [6,7], [15,20], [10,9], [12,12]])

def generate_matrix(coordinate):

 matrix = []

 for i in range(len(coordinate)):

 for j in range(len(coordinate)):

 p = np.linalg.norm(coordinate[i]-coordinate[j])

 matrix.append(p)

 matrix = np.reshape(matrix, (len(coordinate), len(coordinate)))

 return matrix

def solution(matrix):

 points = list(range(0, len(matrix)))

 solution = []

 for i in range(0,len(matrix)):

 random_point = points[random.randint(0, len(points)-1)]

 solution.append(random_point)

 points.remove(random_point)

 return solution

def path_length(matrix, solution):

 cycle_length = 0

 for i in range(0, len(solution)):

 cycle_length += matrix[solution[i]][solution[i-1]]

 return cycle_length

def neighbours(matrix, solution):

 neighbours = []

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 for i in range(0, len(solution)):

 for j in range(i+1, len(solution)):

 neighbour = solution.copy()

 neighbour[i] = solution[j]

 neighbour[j] = solution[i]

 neighbours.append(neighbour)

 best_neighbour = neighbours[0]

 best_path = path_length(matrix, best_neighbour)

 for neighbour in neighbours:

 current_path = path_length(matrix, neighbour)

 if current_path < best_path:

 best_path = current_path

 best_neighbour = neighbour

 return best_neighbour, best_path

def hill_climbing(coordinate):

 matrix = generate_matrix(coordinate)

 current_solution = solution(matrix)

 current_path = path_length(matrix, current_solution)

 neighbour = neighbours(matrix, current_solution)[0]

 best_neighbour, best_neighbour_path = neighbours(matrix, neighbour)

 while best_neighbour_path < current_path:

 current_solution = best_neighbour

 current_path = best_neighbour_path

 neighbour = neighbours(matrix, current_solution)[0]

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 best_neighbour, best_neighbour_path = neighbours(matrix, neighbour)

 return current_path, current_solution

final_solution = hill_climbing(coordinate)

print("The solution is \n", final_solution[1])

Output:

POST EXPERIMENT QUESTIONS:

1. Which is the best algorithm to implement hill climbing?

2. What is the time complexity of hill climbing algorithm?

3. Is backtracking possible in hill climbing algorithm?

LAB EXPERIMENT 12

OBJECTIVE:

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

Write a Program to implement A* Algorithm.

BRIEF DESCRIPTION:

A* is a searching algorithm that is used to find the shortest path between an initial and a final point.

It is a handy algorithm that is often used for map traversal to find the shortest path to be taken. A*

was initially designed as a graph traversal problem, to help build a robot that can find its own course.

It still remains a widely popular algorithm for graph traversal.

It searches for shorter paths first, thus making it an optimal and complete algorithm. An optimal

algorithm will find the least cost outcome for a problem, while a complete algorithm finds all the

possible outcomes of a problem.

Another aspect that makes A* so powerful is the use of weighted graphs in its implementation. A

weighted graph uses numbers to represent the cost of taking each path or course of action. This means

that the algorithms can take the path with the least cost, and find the best route in terms of distance

and time.

PRE EXPERIMENT QUESTIONS

1. What do you understand by Informed Search?

2. What is backtracking?

Explanation:

from collections import deque

class Graph:

 def _init_(self, adjacency_list):

 self.adjacency_list = adjacency_list

 def get_neighbour(self, v):

 return self.adjacency_list[v]

 def h(self, n):

 H = {

 'A':1,

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 'B':1,

 'C':1,

 'D':1

 }

 return H[n]

 def a_star_algorithm(self, start_node, stop_node):

 open_list = set([start_node])

 closed_list = set([])

 g = {}

 g[start_node] = 0

 parent = {}

 parent[start_node] = start_node

 while len(open_list) > 0:

 n = None

 for v in open_list:

 if n==None or g[v] + self.h(v) < g[n] + self.h(n):

 n = v

 if n==None:

 print('Path does not exist')

 return None

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 if n==stop_node:

 reconst_path = []

 while parent[n]!=n:

 reconst_path.append(n)

 n = parent[n]

 reconst_path.append(start_node)

 reconst_path.reverse()

 print('Path found: {}'.format(reconst_path))

 return reconst_path

 for (m, weight) in self.get_neighbour(n):

 if m not in open_list and m not in closed_list:

 open_list.add(m)

 parent[m] = n

 g[m] = g[n] + weight

 else:

 if g[m]>g[n]+weight:

 g[m] = g[n] + weight

 parent[m] = n

 if m in closed_list:

 closed_list.remove(m)

 Artificial Intelligence Lab Using Python (LC-CSE-326G)

DEPARTMENT OF CSE/CSIT/IT/IOT 2022-2023

 open_list.add(m)

 open_list.remove(n)

 closed_list.add(n)

 print('Path does not exist!')

 return None

adjacency_list = {

 'A': [('B', 1), ('C', 3), ('D', 7)],

 'B': [('D', 5)],

 'C': [('D', 12)]

}

graph = Graph(adjacency_list)

graph.a_star_algorithm('A', 'D')

Output:

POST EXPERIMENT QUESTIONS:

1. What is the A * search algorithm based on?

2. What is the heuristic used in A * algorithm?

3. What is the time complexity of A* algorithm?

	6th IoT Level-3.pdf
	Slide 1: IoT for Advanced Applications (Level-3)
	Slide 2: IoT for Advanced Applications (Level-3)
	Slide 3: Summary of Course Content
	Slide 4: Assessment Pattern
	Slide 5: Course Plan
	Slide 6: Course Plan

	AI-VI-11072023

